Overview	The VAR	ALS VAR	gVAR	Chain gVAR	Subgrouping cgVAR	Illustrations	Thanks!
000	00		0000	000	000000	00000000	0

Subgrouping with Chain Graphical VAR

Jonathan J. Park The Pennsylvania State University Department of Human Development and Family Studies JPark@psu.edu

February 24, 2021

Jonathan J. Park

Overview ●00	The VAR 00	ALS VAR 000000	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR 000000	Illustrations 00000000	Thanks! 0

Overview

- Idio-thetic Methods
- The VAR
- The Alternating Least Squares (ALS) VAR
- The Graphical VAR (gVAR)
- The Chain Graphical VAR (cgVAR)
- Subgrouping with cgVAR
- Demonstration

Jonathan J. Park

Overview 0●0	The VAR 00	ALS VAR 000000	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR 000000	Illustrations 00000000	Thanks! 0
		-					
		Sacha E	pskamp		Following	\sim	

Replying to @EikoFried

I mainly dislike representing contemporaneous effects as directed. While these are identified (lagged variables act as exogenous predictors identifying even cycles), exploratory estimation I think may often pick up the wrong direction. GIMME with graphical VAR would be cool!

3:29 AM - 14 Feb 2018

Jonathan J. Park

Overview	The VAR	ALS VAR	gVAR	Chain gVAR	Subgrouping cgVAR	Illustrations	Thanks!
00●	00	000000	0000	000	000000	00000000	0

Idio-thetic Methods

- A class of methods that pool intraindividual information to derive nomothetic inference or vice versa
 - E.g., the multilevel VAR, the multi-VAR, GIMME and S-GIMME, the ALS VAR
 - All differ in allowances for more or less individual variability as well as in estimation
- Current challenge: undiagnosed heterogeneity can bias nomothetic generalizations from idio-thetic approaches
 - E.g., Distinct Profiles: *MDD* vs *Controls*
 - E.g., Sub-Profiles: *MDD*₁ vs *MDD*₂

Jonathan J. Park

Overview	The VAR	ALS VAR	gVAR	Chain gVAR	Subgrouping cgVAR	Illustrations	Thanks!
000	●0		0000	000	000000	00000000	0

Standard VAR Model

Jonathan J. Park

Overview 000	The VAR ○●	ALS VAR 000000	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR 000000	Illustrations 00000000	Thanks! 0
Stand	lard VA	R					

 $\eta_t = c + \Phi \eta_{t-1} + \zeta_t$

- $\eta_t = p$ variate vector of scores at time, t
- c = p variate vector of constants
- $\Phi = p \times p$ dimensional matrix of lagged regression coefficients
- $\eta_{t-1} = p$ variate vector of scores at a given lag
- $\zeta_t = p$ variate vector of residuals

 $\zeta \sim N(0, \Psi)$

Jonathan J. Park

 Overview
 The VAR
 ALS VAR
 gVAR
 Chain gVAR
 Subgrouping cgVAR
 Illustrations
 Thanks!

 000
 00
 0000
 000
 000000
 0
 0000000
 0

Alternating Least Squares VAR

Bulteel et al., 2016

$$\eta_{it} = \sum_{k=1}^{K} p_{ik} (\mu_k + \Phi_k (\eta_{it-1} - \mu_i) + \zeta_{kt})$$

where

- $\eta_{it} = p$ variate vector of scores at time, t, for the i^{th} subject
- p_{ik} = the $I \times K$ cluster-specific partition matrix

• $\mu_k = p$ variate vector of constants for the k^{th} subgroup

- Φ_k = p × p dimensional matrix of lagged regression coefficients for the kth subgroup
- $\zeta_{kt} = p$ variate vector of residuals

Overview 000	The VAR 00	ALS VAR o●oooo	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR	Illustrations 00000000	Thanks! 0
ALS \	VAR						
Ectimati	0.12						

$$L_{K} = \sum_{i=1}^{I} \sum_{t=2}^{T} (\eta_{it} - \hat{\eta}_{it})^{2}$$

where

- L_K = the sum of squared prediction errors
- $\hat{\eta}_{it} = \text{the } p \times 1$ vector of predicted scores for the i^{th} subject at time, t

Jonathan J. Park

Overview 000	The VAR 00	ALS VAR 000●00	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR 000000	Illustrations 00000000	Thanks! 0
ALS \	VAR						

Model Selection by scree ratio

Jonathan J. Park

Overview 000	The VAR 00	ALS VAR 0000●0	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR	Illustrations 00000000	Thanks! 0
ALS \	/AR						
Model S	election by	scree ratio					

Overview 000	The VAR 00	ALS VAR	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR 000000	Illustrations 00000000	Thanks! 0
ALS N Recap	/AR						

- Derives K-cluster solution for VAR models
- "Forces" common structure to all subjects within a cluster
- Best models minimize prediction error while attempting to preserve parsimony

Overview 000	The VAR 00	ALS VAR	gVAR ●000	Chain gVAR 000	Subgrouping cgVAR	Illustrations 00000000	Thanks! 0

Graphical VAR

Jonathan J. Park

Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

 Graphical VAR builds upon the VAR and estimates a network of contemporaneous partial correlations using the inverse residual covariance matrix

• i.e.,
$$K = \Psi^{-1} = cov[\zeta_t, \zeta_t^t]^{-1}$$

- Contemporaneous effects interpreted as X ↔ Y conditioned upon all other pairwise associations
- Also generates a network of standardized, lagged regression coefficients

$\mathsf{VAR} \to \mathsf{gVAR}$ - The Partial Contemporaneous Network

Illustrations

Thanks!

The inverse of the residual covariance matrix (i.e., $K = \Psi^{-1}$) can be transformed into a network of partial contemporaneous correlations (PCCs) using the following:

$$PCC(X_{i,t}, X_{j,t}) = -rac{\kappa_{ij}}{\sqrt{\kappa_{ii}\kappa_{jj}}}$$

Where:

Overview

The VAR

ALS VAR

gVAR

0000

•
$$K_{ij}$$
 = the element of K at coordinates (i, j)

- K_{ii} = the diagonal element of K associated with item, *i*
- K_{jj} = the diagonal element of K associated with item, j

Jonathan J. Park

 $\mathsf{VAR} \to \mathsf{gVAR}$ - The Partial Directed Network

gVAR

0000

The lagged relationships of the VAR can also be standardized using information from K to form a network of partial directed correlations (PDCs) using the following formula:

Illustrations

Thanks!

$$PDC(X_{i,t},X_{j,t-1}) = rac{\Phi_{ij}}{\sqrt{\Psi_{ii} \kappa_{jj} + \Phi_{ij}^2}}$$

Where:

Overview

The VAR

ALS VAR

- Φ_{ij} = the regression coefficient of *i* on *j*
- Ψ_{ii} = the residual variance of the outcome at time, t
- K_{jj} = the diagonal element of K associated with item, j

Jonathan J. Park

The Chain Graphical VAR

Epskamp et al., 2018

$$\eta_{i,t} = \mu_i + \Phi_i(\eta_{i,t-1} - \mu_i) + \zeta_{(i,t)}$$

where

- $\eta_{i,t} = p$ variate vector of scores at time, t, for subject i
- μ_i = the person-specific mean vector for subject, *i*
- Φ_i = p × p dimensional matrix of lagged regression coefficients for subject i
- $\zeta_{i,t} = p$ variate residual vector at time, t for subject i

$$\zeta_{i,T} \sim N(0, \Psi_i) \ \mathsf{K}_i^{(\Psi)} = \Psi_i^{-1}$$

Jonathan J. Park

Assuming a subject picked at random, and data are grand-mean centered, we expect the following (Epskamp et al., 2018):

$$\begin{split} \mathbb{E}(\mu_I) &= 0 \\ \mathbb{E}(\Phi_I) &= \Phi_* \\ \mathbb{E}(\mathsf{K}_I^{(\Psi)}) &= \mathsf{K}_*^{(\Psi)} \end{split}$$

where

Φ_{*} = average p × p dimensional lagged effects matrix
 K^(Ψ)_{*} = average p × p dimensional precision matrix
 e.g., (Φ_i − Φ_{*}) would be the 'random effects'

Jonathan J. Park

Overview 000	The VAR 00	ALS VAR 000000	gVAR 0000	Chain gVAR 00●	Subgrouping cgVAR	Illustrations 00000000	Thanks! 0
Recap)						

- A graphical VAR model can be fit to the chained time-series of multiple subjects; the chained graphical VAR
- Resulting "average" lagged and contemporaneous networks are thought of as common structures but are not imposed on subject-level networks
- Strong assumption of homogeneity to fit a chain gVAR
- Output contains parameterized networks at the group- and individual-level

Overview	The VAR	ALS VAR	gVAR	Chain gVAR	Subgrouping cgVAR	Illustrations	Thanks!
000	00	000000	0000	000		00000000	0

Why Cluster?

Jonathan J. Park

Our Approach

Jonathan J. Park

Overview 000	The VAR 00	ALS VAR 000000	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR 00●000	Illustrations 00000000	Thanks! 0
Optin _{Why?}	nization	n of A					

- Communities should be more densely connected to same-community members than they are to members of other communities
- S-GIMME, by default, subtracts the minimum value from all cells to induce sparsity
- This makes sense as we would expect the minimum value to exist in the space between communities

Overvie	w The VAR	ALS VAR	gVAR	Chain gVAR	Subgrouping cgVAR	Illustrations	Thanks!
000	00	000000	0000	000		00000000	0

The Adjacency Matrix

0	15	13	18	4	6	5	4
15	0	11	12	3	4	4	3
13	11	0	12	2	2	2	2
18	12	12	0	3	4	2	4
4	3	2	3	0	9	6	9
4 6	3	2 2	3 4	0 9	9 0	6 8	9 10

Jonathan J. Park

 Overview
 The VAR
 ALS VAR
 gVAR
 Chain gVAR
 Subgrouping cgVAR
 Illustrations
 Thanks!

 000
 00
 000000
 000
 0000000
 0

Comparison of Adjacency Matrix Optimization

Simulated example - Minimum out versus Conductance

Jonathan J. Park

Overview 000	The VAR 00	ALS VAR 000000	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR 00000●	Illustrations 00000000	Thanks! 0
Recap	on sce	gVAR					

- scgVAR identifies homogeneous subgroups by optimizing the conductance of the person-by-person graph
- Fits a chain graphical VAR to the chained time-series of all individuals within each subgroup
- Provides 1 group-level network, K subgroup-level networks, and N person-specific networks

Overviev	v The VAR	ALS VAR	gVAR	Chain gVAR	Subgrouping cgVAR	Illustrations	Thanks!
000	00	000000	0000	000	000000	•0000000	0

Simulated Illustration

- *N* = 52
- Network Size = 10-nodes
- 4-Simulated Subgroups
- *N_{reps}* = 30
- *T* = 500
- 10 autoregressions and 9 cross-regressions
 - 8 subgroup-specific
 - $\blacksquare\ 1$ shared between groups 1 and 2
 - 1 shared between groups 3 and 4

Jonathan J. Park

Overview 000	The VAR 00	ALS VAR 000000	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR	Illustrations ○●○○○○○○	Thanks! 0

Simulated Illustration

Recovered Subgroups scgVAR

Jonathan J. Park

	Overview 000	The VAR 00	ALS VAR 000000	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR	Illustrations 00000000	Thanks! 0
--	-----------------	---------------	-------------------	--------------	-------------------	-------------------	---------------------------	--------------

2

з

Simulated Illustration

scgVAR subgroups 1 and 2 == ALS VAR subgroup 1

Jonathan J. Park

	Overview 000	The VAR 00	ALS VAR	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR 000000	Illustrations 00000000	Thanks! 0
--	-----------------	---------------	---------	--------------	-------------------	-----------------------------	---------------------------	--------------

Simulated Illustration

scgVAR subgroups 3 and 4 == ALS VAR subgroup 2

Jonathan J. Park

	anks!
The MOOVD Study de Vos et al., 2017	

- N = 47 participants
 - 24 participants had Major Depressive Disorder (MDD)
 - 23 participants were pair-matched controls

• $\overline{T} = 83.2$; SD = 7.4; measurements 3-times a day for 30-days

- Assessed on 14-affect items (7 positive; 7 negative)
- scgVAR settings:
 - $\gamma = 0.00$ model selection with BIC
 - $n\lambda = 10$; search 10×10 grid of possible λ_1 and λ_2 values
- ALS VAR settings:
 - $K_{max} = 47$; search all possible cluster combinations
 - Cluster solution which maximized st_k selected as optimal model

Overview	The VAR	ALS VAR	gVAR	Chain gVAR	Subgrouping cgVAR	Illustrations	Thanks!
000	00	000000	0000	000		00000●00	0

Demonstration

Jonathan J. Park

Overview	The VAR	ALS VAR	gVAR	Chain gVAR	Subgrouping cgVAR	Illustrations	Thanks!
000	00	000000	0000	000	000000	000000●0	0

Demonstration

Subgroup 1

Jonathan J. Park

Overview 000	The VAR 00	ALS VAR 000000	gVAR 0000	Chain gVAR 000	Subgrouping cgVAR	Illustrations 0000000	Thanks! 0	

Demonstration

Jonathan J. Park

Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

Concluding Remarks

- Idio-thetic methods allow for nomothetic inferences to be made by pooling intraindividual information
- We introduce Subgrouping with Chain Graphical VAR models as one way of making idio-thetic inference
- Will be coming to the graphicalVAR package soon :D
 - Can e-mail me for current prototype
- Feedback and inquiries can be sent to:
 - JPark@psu.edu
 - JonathanPark.dev

Thank you!

Jonathan J. Park