Subgrouping with Chain Graphical VAR

Jonathan J. Park
The Pennsylvania State University
Department of Human Development and Family Studies JPark@psu.edu

February 24, 2021

Overview

- Idio-thetic Methods
- The VAR
- The Alternating Least Squares (ALS) VAR
- The Graphical VAR (gVAR)
- The Chain Graphical VAR (cgVAR)

■ Subgrouping with cgVAR

- Demonstration

I mainly dislike representing contemporaneous effects as directed. While these are identified (lagged variables act as exogenous predictors identifying even cycles), exploratory estimation I think may often pick up the wrong direction. GIMME with graphical VAR would be cool!

3:29 AM - 14 Feb 2018
2 Likes 3
$Q 1$ Һป $\quad \bigcirc 2 \quad \square$

Idio-thetic Methods

- A class of methods that pool intraindividual information to derive nomothetic inference or vice versa

■ E.g., the multilevel VAR, the multi-VAR, GIMME and S-GIMME, the ALS VAR
■ All differ in allowances for more or less individual variability as well as in estimation

- Current challenge: undiagnosed heterogeneity can bias nomothetic generalizations from idio-thetic approaches
- E.g., Distinct Profiles: MDD vs Controls
- E.g., Sub-Profiles: $M D D_{1}$ vs $M D D_{2}$

Standard VAR Model

Standard VAR

$$
\eta_{t}=c+\Phi \eta_{t-1}+\zeta_{t}
$$

■ $\eta_{t}=p$ variate vector of scores at time, t
■ $c=p$ variate vector of constants

- $\Phi=p \times p$ dimensional matrix of lagged regression coefficients
- $\eta_{t-1}=p$ variate vector of scores at a given lag
- $\zeta_{t}=p$ variate vector of residuals

$$
\zeta \sim N(0, \Psi)
$$

Alternating Least Squares VAR

$$
\eta_{i t}=\sum_{k=1}^{K} p_{i k}\left(\mu_{k}+\Phi_{k}\left(\eta_{i t-1}-\mu_{i}\right)+\zeta_{k t}\right)
$$

where

- $\eta_{i t}=p$ variate vector of scores at time, t, for the $i^{t h}$ subject
- $p_{i k}=$ the $I \times K$ cluster-specific partition matrix

■ $\mu_{k}=p$ variate vector of constants for the $k^{t h}$ subgroup

- $\Phi_{k}=p \times p$ dimensional matrix of lagged regression coefficients for the $k^{t h}$ subgroup
- $\zeta_{k t}=p$ variate vector of residuals

ALS VAR

Estimation

$$
L_{K}=\sum_{i=1}^{l} \sum_{t=2}^{T}\left(\eta_{i t}-\hat{\eta}_{i t}\right)^{2}
$$

where

- $L_{K}=$ the sum of squared prediction errors
- $\hat{\eta}_{i t}=$ the $p \times 1$ vector of predicted scores for the $i^{\text {th }}$ subject at time, t

ALS VAR

Estimation

1a. Fit VAR(1) models to each subject

1b. Calculate Euclidean distances between all pairs of subjects using VAR(1) regression matrices

1c. Conduct hierarchical clustering with Ward's criterion on the
Euclidean distances and use the K cluster partitioning as a rational start

2. Fit a VAR(1) model to the data within a cluster using OLS (First observation of each person is removed so subjects don't predict each other)

Jonathan J. Park

Subgrouping with Chain Graphical VAR

ALS VAR

Model Selection by scree ratio

Scree Plot of K by LK

Subgrouping with Chain Graphical VAR

ALS VAR

Model Selection by scree ratio

Scree Plot of K by LK

Subgrouping with Chain Graphical VAR

ALS VAR

Recap

- Derives K-cluster solution for VAR models

■ "Forces" common structure to all subjects within a cluster
■ Best models minimize prediction error while attempting to preserve parsimony

Graphical VAR

Graphical VAR

- Graphical VAR builds upon the VAR and estimates a network of contemporaneous partial correlations using the inverse residual covariance matrix

■ i.e., $\mathrm{K}=\Psi^{-1}=\operatorname{cov}\left[\zeta_{t}, \zeta_{t}^{t}\right]^{-1}$
■ Contemporaneous effects interpreted as $\mathrm{X} \leftrightarrow \mathrm{Y}$ conditioned upon all other pairwise associations

- Also generates a network of standardized, lagged regression coefficients

VAR \rightarrow gVAR - The Partial Contemporaneous Network

The inverse of the residual covariance matrix (i.e., $\mathrm{K}=\Psi^{-1}$) can be transformed into a network of partial contemporaneous correlations (PCCs) using the following:

$$
\operatorname{PCC}\left(X_{i, t}, X_{j, t}\right)=-\frac{K_{i j}}{\sqrt{K_{i i} K_{j j}}}
$$

Where:

- $K_{i j}=$ the element of K at coordinates (i, j)
- $K_{i i}=$ the diagonal element of K associated with item, i
- $K_{j j}=$ the diagonal element of K associated with item, j

VAR \rightarrow gVAR - The Partial Directed Network

The lagged relationships of the VAR can also be standardized using information from K to form a network of partial directed correlations (PDCs) using the following formula:

$$
\operatorname{PDC}\left(X_{i, t}, X_{j, t-1}\right)=\frac{\Phi_{i j}}{\sqrt{\Psi_{i i} K_{j j}+\Phi_{i j}^{2}}}
$$

Where:

- $\Phi_{i j}=$ the regression coefficient of i on j
- $\Psi_{i i}=$ the residual variance of the outcome at time, t
- $K_{j j}=$ the diagonal element of K associated with item, j

The Chain Graphical VAR

Epskamp et al., 2018

$$
\eta_{i, t}=\mu_{i}+\Phi_{i}\left(\eta_{i, t-1}-\mu_{i}\right)+\zeta_{(i, t)}
$$

where
■ $\eta_{i, t}=\mathrm{p}$ variate vector of scores at time, t, for subject i
■ $\mu_{i}=$ the person-specific mean vector for subject, i
■ $\Phi_{i}=p \times p$ dimensional matrix of lagged regression coefficients for subject i
■ $\zeta_{i, t}=\mathrm{p}$ variate residual vector at time, t for subject i

$$
\begin{gathered}
\zeta_{i, T} \sim N\left(0, \Psi_{i}\right) \\
\mathrm{K}_{i}^{(\Psi)}=\Psi_{i}^{-1}
\end{gathered}
$$

Assumptions

Assuming a subject picked at random, and data are grand-mean centered, we expect the following (Epskamp et al., 2018):

$$
\begin{gathered}
\mathbb{E}\left(\mu_{I}\right)=0 \\
\mathbb{E}\left(\Phi_{l}\right)=\Phi_{*} \\
\mathbb{E}\left(\mathrm{~K}_{l}^{(\Psi)}\right)=\mathrm{K}_{*}^{(\Psi)}
\end{gathered}
$$

where

- $\Phi_{*}=$ average $p \times p$ dimensional lagged effects matrix
- $\mathrm{K}_{*}^{(\Psi)}=$ average $p \times p$ dimensional precision matrix
e.g., $\left(\Phi_{i}-\Phi_{*}\right)$ would be the 'random effects'

Recap

- A graphical VAR model can be fit to the chained time-series of multiple subjects; the chained graphical VAR
■ Resulting "average" lagged and contemporaneous networks are thought of as common structures but are not imposed on subject-level networks
- Strong assumption of homogeneity to fit a chain gVAR
- Output contains parameterized networks at the group- and individual-level

Why Cluster?

Group-Level Model
Subgroup 1
Subgroup 2

Our Approach

Fit Graphical VAR to all Subjects

Jonathan J. Park

Subgrouping with Chain Graphical VAR

Optimization of A

Why?

■ Communities should be more densely connected to same-community members than they are to members of other communities
■ S-GIMME, by default, subtracts the minimum value from all cells to induce sparsity

- This makes sense as we would expect the minimum value to exist in the space between communities

The Adjacency Matrix

0	15	13	18	4	6	5	4
15	0	11	12	3	4	4	3
13	11	0	12	2	2	2	2
18	12	12	0	3	4	2	4
4	3	2	3	0	9	6	9
6	4	2	4	9	0	8	10
5	4	2	2	6	8	0	6
4	3	2	4	9	10	6	0

Comparison of Adjacency Matrix Optimization

Simulated example - Minimum out versus Conductance

Recap on scgVAR

- scgVAR identifies homogeneous subgroups by optimizing the conductance of the person-by-person graph
- Fits a chain graphical VAR to the chained time-series of all individuals within each subgroup
- Provides 1 group-level network, K subgroup-level networks, and N person-specific networks

Simulated Illustration

- $N=52$

■ Network Size $=10$-nodes
■ 4-Simulated Subgroups

- $N_{\text {reps }}=30$
- $T=500$
- 10 autoregressions and 9 cross-regressions
- 8 subgroup-specific
- 1 shared between groups 1 and 2
- 1 shared between groups 3 and 4

Simulated Illustration

Recovered Subgroups scgVAR

Jonathan J. Park

Subgrouping with Chain Graphical VAR

Simulated Illustration

scgVAR subgroups 1 and $2==$ ALS VAR subgroup 1

ALS Subgroup

Simulated Illustration

scgVAR subgroups 3 and $4==$ ALS VAR subgroup 2

ALS Subgroup

The MOOVD Study

```
de Vos et al., }201
```

- $N=47$ participants
- 24 participants had Major Depressive Disorder (MDD)
- 23 participants were pair-matched controls
- $\bar{T}=83.2 ; S D=7.4$; measurements 3 -times a day for 30 -days

■ Assessed on 14-affect items (7 positive; 7 negative)

- scgVAR settings:
- $\gamma=0.00$ model selection with BIC
- $n \lambda=10$; search 10×10 grid of possible λ_{1} and λ_{2} values
- ALS VAR settings:
- $K_{\max }=47$; search all possible cluster combinations
- Cluster solution which maximized $s t_{k}$ selected as optimal model

Demonstration

Demonstration

Subgroup 1

Demonstration

Subgroup 1

S.bygroup 3

Concluding Remarks

- Idio-thetic methods allow for nomothetic inferences to be made by pooling intraindividual information
- We introduce Subgrouping with Chain Graphical VAR models as one way of making idio-thetic inference
■ Will be coming to the graphicalVAR package soon :D
- Can e-mail me for current prototype
- Feedback and inquiries can be sent to:
- JPark@psu.edu
- JonathanPark.dev

Thank you!

