
Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

Subgrouping with Chain Graphical VAR

Jonathan J. Park
The Pennsylvania State University

Department of Human Development and Family Studies
JPark@psu.edu

February 24, 2021

Jonathan J. Park

Subgrouping with Chain Graphical VAR



Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

Overview

Idio-thetic Methods

The VAR

The Alternating Least Squares (ALS) VAR

The Graphical VAR (gVAR)

The Chain Graphical VAR (cgVAR)

Subgrouping with cgVAR

Demonstration

Jonathan J. Park

Subgrouping with Chain Graphical VAR



Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

Jonathan J. Park

Subgrouping with Chain Graphical VAR



Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

Idio-thetic Methods

A class of methods that pool intraindividual information to
derive nomothetic inference or vice versa

E.g., the multilevel VAR, the multi-VAR, GIMME and
S-GIMME, the ALS VAR
All differ in allowances for more or less individual variability as
well as in estimation

Current challenge: undiagnosed heterogeneity can bias
nomothetic generalizations from idio-thetic approaches

E.g., Distinct Profiles: MDD vs Controls
E.g., Sub-Profiles: MDD1 vs MDD2
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Standard VAR Model
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Standard VAR

ηt = c + Φηt−1 + ζt

ηt = p variate vector of scores at time, t

c = p variate vector of constants

Φ = p× p dimensional matrix of lagged regression coefficients

ηt−1 = p variate vector of scores at a given lag

ζt = p variate vector of residuals

ζ ∼ N(0,Ψ)
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Alternating Least Squares VAR
Bulteel et al., 2016

ηit =
K∑

k=1

pik(µk + Φk(ηit−1 − µi ) + ζkt)

where

ηit = p variate vector of scores at time, t, for the i th subject

pik = the I × K cluster-specific partition matrix

µk = p variate vector of constants for the kth subgroup

Φk = p × p dimensional matrix of lagged regression
coefficients for the kth subgroup

ζkt = p variate vector of residuals

Jonathan J. Park
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ALS VAR
Estimation

LK =
I∑

i=1

T∑
t=2

(ηit − η̂it)2

where

LK = the sum of squared prediction errors

η̂it = the p × 1 vector of predicted scores for the i th subject at
time, t
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ALS VAR
Estimation

1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject1a. Fit VAR(1) models to each subject

1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using1b. Calculate Euclidean distances between all pairs of subjects using
VAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matricesVAR(1) regression matrices

1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the1c. Conduct hierarchical clustering with Ward’s criterion on the
Euclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational startEuclidean distances and use the K cluster partitioning as a rational start

2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS2. Fit a VAR(1) model to the data within a cluster using OLS
(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)(First observation of each person is removed so subjects don’t predict each other)

3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where3a. Update partition matrix by moving subjects to clusters where
their sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimizedtheir sum of squared prediction errors are minimized

3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters3b. Re-estimate VAR(1) models for new clusters

4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters4. Check if subjects can be moved to other clusters
with lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errorswith lower prediction errors

Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3Repeat step 3 Terminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate AlgorithmTerminate Algorithm

YesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYes NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo
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ALS VAR
Model Selection by scree ratio
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ALS VAR
Model Selection by scree ratio
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ALS VAR
Recap

Derives K -cluster solution for VAR models

“Forces” common structure to all subjects within a cluster

Best models minimize prediction error while attempting to
preserve parsimony

Jonathan J. Park
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Graphical VAR

V 1t

V 1t−1

V 2t
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Graphical VAR

Graphical VAR builds upon the VAR and estimates a network
of contemporaneous partial correlations using the inverse
residual covariance matrix

i.e., K = Ψ−1 = cov [ζt , ζ
t
t ]−1

Contemporaneous effects interpreted as X ↔ Y conditioned
upon all other pairwise associations

Also generates a network of standardized, lagged regression
coefficients

Jonathan J. Park
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VAR → gVAR - The Partial Contemporaneous Network

The inverse of the residual covariance matrix (i.e., K = Ψ−1) can
be transformed into a network of partial contemporaneous
correlations (PCCs) using the following:

PCC (Xi ,t ,Xj ,t) = − Kij√
KiiKjj

Where:

Kij = the element of K at coordinates (i , j)
Kii = the diagonal element of K associated with item, i
Kjj = the diagonal element of K associated with item, j

Jonathan J. Park
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VAR → gVAR - The Partial Directed Network

The lagged relationships of the VAR can also be standardized using
information from K to form a network of partial directed
correlations (PDCs) using the following formula:

PDC (Xi ,t ,Xj ,t−1) =
Φij√

ΨiiKjj+Φ2
ij

Where:

Φij = the regression coefficient of i on j
Ψii = the residual variance of the outcome at time, t
Kjj = the diagonal element of K associated with item, j

Jonathan J. Park
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The Chain Graphical VAR
Epskamp et al., 2018

ηi ,t = µi + Φi (ηi ,t−1 − µi ) + ζ(i ,t)

where

ηi ,t = p variate vector of scores at time, t, for subject i

µi = the person-specific mean vector for subject, i

Φi = p × p dimensional matrix of lagged regression
coefficients for subject i

ζi ,t = p variate residual vector at time, t for subject i

ζi ,T ∼ N(0,Ψi )

K
(Ψ)
i = Ψ−1

i

Jonathan J. Park
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Assumptions

Assuming a subject picked at random, and data are grand-mean
centered, we expect the following (Epskamp et al., 2018):

E(µI ) = 0
E(ΦI ) = Φ∗

E(K
(Ψ)
I ) = K

(Ψ)
∗

where

Φ∗ = average p × p dimensional lagged effects matrix

K
(Ψ)
∗ = average p × p dimensional precision matrix

e.g., (Φi − Φ∗) would be the ‘random effects’

Jonathan J. Park
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Recap

A graphical VAR model can be fit to the chained time-series
of multiple subjects; the chained graphical VAR

Resulting “average” lagged and contemporaneous networks
are thought of as common structures but are not imposed on
subject-level networks

Strong assumption of homogeneity to fit a chain gVAR

Output contains parameterized networks at the group- and
individual-level

Jonathan J. Park
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Why Cluster?

Jonathan J. Park
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Our Approach

Fit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all SubjectsFit Graphical VAR to all Subjects

Create Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, ACreate Adjacency Matrix, A
Where ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total pathsWhere ith and jth elements in A are the total paths

Subjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in commonSubjects i and j have in common

Estimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrapEstimate Subgroups with WalkTrap
(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)(Which Optimizes Modularity)

Calculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the SampleCalculate Conductance for the Sample
Check Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of ACheck Whether Conductance is Optimized Across all Subsets of A

Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,Subtract some value, x,
from all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of Afrom all cells of A

Fit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VARFit Chain Graphical VAR
Within Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each CommunityWithin Each Community

NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo YesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYes

Jonathan J. Park

Subgrouping with Chain Graphical VAR



Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

Optimization of A
Why?

Communities should be more densely connected to
same-community members than they are to members of other
communities

S-GIMME, by default, subtracts the minimum value from all
cells to induce sparsity

This makes sense as we would expect the minimum value to
exist in the space between communities

Jonathan J. Park

Subgrouping with Chain Graphical VAR



Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

The Adjacency Matrix

Jonathan J. Park
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Comparison of Adjacency Matrix Optimization
Simulated example - Minimum out versus Conductance
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Recap on scgVAR

scgVAR identifies homogeneous subgroups by optimizing the
conductance of the person-by-person graph

Fits a chain graphical VAR to the chained time-series of all
individuals within each subgroup

Provides 1 group-level network, K subgroup-level networks,
and N person-specific networks

Jonathan J. Park

Subgrouping with Chain Graphical VAR



Overview The VAR ALS VAR gVAR Chain gVAR Subgrouping cgVAR Illustrations Thanks!

Simulated Illustration

N = 52

Network Size = 10-nodes

4-Simulated Subgroups

Nreps = 30

T = 500

10 autoregressions and 9 cross-regressions

8 subgroup-specific
1 shared between groups 1 and 2
1 shared between groups 3 and 4

Jonathan J. Park
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Simulated Illustration
Recovered Subgroups scgVAR
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Simulated Illustration
scgVAR subgroups 1 and 2 == ALS VAR subgroup 1
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Simulated Illustration
scgVAR subgroups 3 and 4 == ALS VAR subgroup 2

gVAR Subgroups ALS Subgroup

Jonathan J. Park
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The MOOVD Study
de Vos et al., 2017

N = 47 participants

24 participants had Major Depressive Disorder (MDD)
23 participants were pair-matched controls

T̄ = 83.2;SD = 7.4; measurements 3-times a day for 30-days

Assessed on 14-affect items (7 positive; 7 negative)

scgVAR settings:

γ = 0.00 model selection with BIC
nλ = 10; search 10× 10 grid of possible λ1 and λ2 values

ALS VAR settings:

Kmax = 47; search all possible cluster combinations
Cluster solution which maximized stk selected as optimal model

Jonathan J. Park
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Demonstration
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Demonstration
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Concluding Remarks

Idio-thetic methods allow for nomothetic inferences to be
made by pooling intraindividual information

We introduce Subgrouping with Chain Graphical VAR models
as one way of making idio-thetic inference

Will be coming to the graphicalVAR package soon :D

Can e-mail me for current prototype

Feedback and inquiries can be sent to:

JPark@psu.edu
JonathanPark.dev

Thank you!

Jonathan J. Park
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